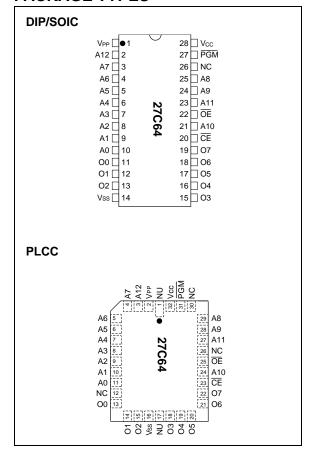


27C64

64K (8K x 8) CMOS EPROM

FEATURES

- · High speed performance
 - 120 ns access time available
- CMOS Technology for low power consumption
 - 20 mA Active current
 - 100 µA Standby current
- · Factory programming available
- · Auto-insertion-compatible plastic packages
- Auto ID aids automated programming
- · Separate chip enable and output enable controls
- High speed "express" programming algorithm
- Organized 8K x 8: JEDEC standard pinouts
 - 28-pin Dual-in-line package
 - 32-pin PLCC Package
 - 28-pin SOIC package
 - Tape and reel
- · Available for the following temperature ranges


Commercial: 0°C to +70°C
 Industrial: -40°C to +85°C

DESCRIPTION

The Microchip Technology Inc. 27C64 is a CMOS 64K bit (electrically) Programmable Read Only Memory. The device is organized as 8K words by 8 bits (8K bytes). Accessing individual bytes from an address transition or from power-up (chip enable pin going low) is accomplished in less than 120 ns. CMOS design and processing enables this part to be used in systems where reduced power consumption and high reliability are requirements.

A complete family of packages is offered to provide the most flexibility in applications. For surface mount applications, PLCC or SOIC packaging is available. Tape and reel packaging is also available for PLCC or SOIC packages.

PACKAGE TYPES

1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings*

Vcc and input voltages w.r.t. Vss.....-0.6V to + 7.25V

VPP voltage w.r.t. Vss during

programming-0.6V to +14V

Voltage on A9 w.r.t. Vss....-0.6V to +13.5V

Output voltage w.r.t. Vss...-0.6V to Vcc +1.0V

Storage temperature ...-65°C to +150°C

Ambient temp. with power applied-65°C to +125°C

*Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: PIN FUNCTION TABLE

Name	Function
A0-A12	Address Inputs
CE	Chip Enable
ŌĒ	Output Enable
PGM	Program Enable
VPP	Programming Voltage
O0 - O7	Data Output
Vcc	+5V Power Supply
Vss	Ground
NC	No Connection; No Internal Connections
NU	Not Used; No External Connection Is Allowed

TABLE 1-2: READ OPERATION DC CHARACTERISTICS

Commercial: Tamb = 0°C to +70°C Industrial: Tamb = -40°C to +85°C									
Parameter	Part*	Status	Symbol	Min	Max	Units	Conditions		
Input Voltages	all	Logic "1" Logic "0"	VIH VIL	2.0 -0.5	Vcc+1 0.8	V			
Input Leakage	all	_	ILI	-10	10	μΑ	VIN = 0 to VCC		
Output Voltages	all	Logic "1" Logic "0"	Voh Vol	2.4	0.45	V V	IOH = -400 μA IOL = 2.1 mA		
Output Leakage	all	_	ILO	-10	10	μΑ	Vout = 0V to Vcc		
Input Capacitance	all	_	Cin	_	6	pF	VIN = 0V; Tamb = 25°C; f = 1 MHz		
Output Capacitance	all	_	Соит	_	12	pF	Vout = 0V; Tamb = 25 °C; f = 1 MHz		
Power Supply Current, Active	C	TTL input TTL input	ICC1 ICC2	_	20 25	mA mA	VCC = 5.5V; VPP = VCC; f = 1 MHz; $\overline{OE} = \overline{CE} = VIL$; IOUT = 0 mA; VIL = -0.1 to 0.8V; VIH = 2.0 to VCC; Note 1		
Power Supply Current, Standby	C I all	TTL input TTL input CMOS input	Icc(s) — —	_ _ _	2 3 100	mA mA μA	<u>CE</u> = Vcc ± 0.2V		

 $VCC = +5V (\pm 10\%)$

Read Mode

Read Mode

all

all

Note 1: Typical active current increases .5 mA per MHz up to operating frequency for all temperature ranges.

IPP

 VPP

100

Vcc

Vcc-0.7

μΑ

VPP = 5.5V

IPP Read Current

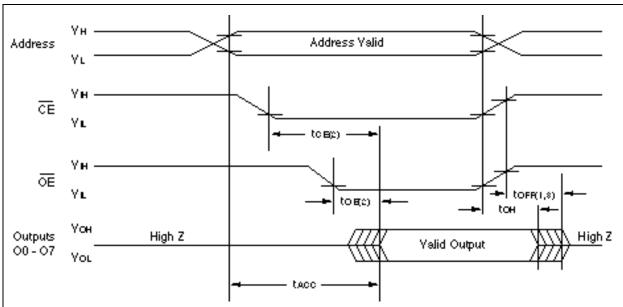
VPP Read Voltage

^{*} Parts: C=Commercial Temperature Range; I =Industrial Temperature Range.

TABLE 1-3: READ OPERATION AC CHARACTERISTICS

AC Testing Waveform: VIH = 2.4V and VIL = 0.45V; VOH = 2.0V VOL = 0.8V

Output Load: 1 TTL Load + 100 pF


Input Rise and Fall Times: 10 ns

Ambient Temperature: Commercial: Tamb = 0° C to $+70^{\circ}$ C

Industrial: Tamb = -40°C to +85°C

Parameter	Cum	27C64-12		27C64-15		27C64-17		27C64-20		27C64-25		Units	Conditions	
Farameter	Sym	Min	Max	Units	Conditions									
Address to Output Delay	tACC	_	120	_	150	ı	170	_	200	ı	250	ns	$\overline{CE} = \overline{OE} = VIL$	
CE to Output Delay	tCE	_	120	-	150	l	170	-	200	l	250	ns	OE = VIL	
OE to Output Delay	tOE	_	65	_	70		70	_	75		100	ns	CE = VIL	
CE or OE to O/P High Impedance	tOFF	0	50	0	50	0	50	0	55	0	60	ns		
Output Hold from Address CE or OE, whichever occurs first	tон	0	_	0	_	0		0	_	0	_	ns		

FIGURE 1-1: READ WAVEFORMS

Note 1: tOFF is specified for \overline{OE} or \overline{CE} , whichever occurs first.

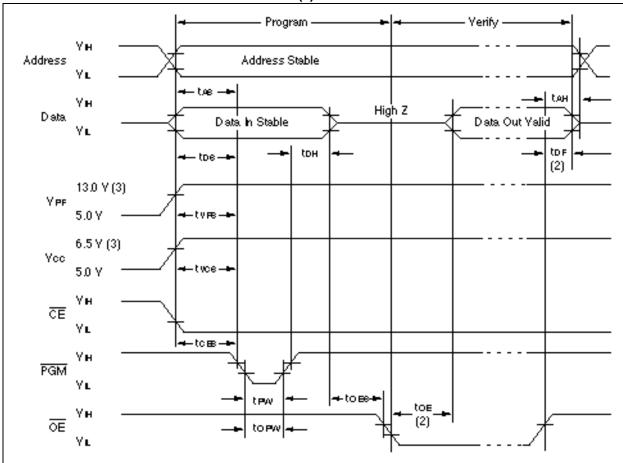
2: $\overline{\text{OE}}$ may be delayed up to tCE - tOE after the falling edge of $\overline{\text{CE}}$ without impact on tCE.

3: This parameter is sampled and is not 100% tested.

TABLE 1-4: PROGRAMMING DC CHARACTERISTICS

	Ambient Temperature: Tamb = 25° C $\pm 5^{\circ}$ C VCC = 6.5 V ± 0.25 V, VPP = VH = 13.0 V ± 0.25 V												
Parameter	Status	Status Symbol Min Max. Units Conditions											
Input Voltages	Logic"1" Logic"0"	VIH VIL	2.0 -0.1	Vcc+1 0.8	V V								
Input Leakage	_	ILI	-10	10	μΑ	VIN = 0V to VCC							
Output Voltages	Logic"1" Logic"0"	Voh Vol	2.4 —	— 0.45	V V	IOH = -400 μA IOL = 2.1 mA							
Vcc Current, program & verify	_	ICC2	_	20	mA	Note 1							
VPP Current, program	_	IPP2	_	25	mA	Note 1							
A9 Product Identification	_	Vн	11.5	12.5	V								

Note 1: VCC must be applied simultaneously or before VPP and removed simultaneously or after VPP.


TABLE 1-5: PROGRAMMING AC CHARACTERISTICS

for Program, Program Verify and Program Inhibit Modes AC Testing Waveform: VIH=2.4V and VIL=0.45V; VOH=2.0V; VOL=0.8V Ambient Temperature: Tamb=25°C \pm 5°C VCC= 6.5 V \pm 0.25V, VPP = VH = 13.0 V \pm 0.25V										
Parameter	Symbol	Min	Max	Units	Remarks					
Address Set-Up Time	tAS	2	_	μs						
Data Set-Up Time	tDS	2	_	μs						
Data Hold Time	tDH	2	_	μs						
Address Hold Time	tah	0	_	μs						
Float Delay (2)	tDF	0	130	ns						
Vcc Set-Up Time	tvcs	2	_	μs						
Program Pulse Width (1)	tpw	95	105	μs	100 μs typical					
CE Set-Up Time	tces	2	_	μs						
OE Set-Up Time	toes	2	_	μs						
VPP Set-Up Time	tvps	2	_	μs						
Data Valid from OE	tOE	_	100	ns						

Note 1: For express algorithm, initial programming width tolerance is 100 μ s $\pm 5\%$.

^{2:} This parameter is only sampled and not 100% tested. Output float is defined as the point where data is no longer driven (see timing diagram).

FIGURE 1-2: PROGRAMMING WAVEFORMS (1)

Notes: (1) The input timing reference is 0.8 Y for YL and 2.0 Y for YH.

- (2) to F and to E are characteristics of the device but must be accommodated by the programmer.
- (3) Ycc = 6.5 Y ±0.25 Y, Y PP = YH = 13.0 Y ±0.25 Y for Express algorithm.

TABLE 1-6: MODES

Operation Mode	CE	OE	PGM	VPP	A9	00 - 07
Read	VIL	VIL	VIH	Vcc	Х	Dout
Program	VIL	VIH	VIL	VH	Х	DIN
Program Verify	VIL	VIL	VIH	VH	Χ	Dout
Program Inhibit	VIH	Х	X	VH	Х	High Z
Standby	VIH	Х	X	Vcc	Х	High Z
Output Disable	VIL	VIH	VIH	Vcc	Х	High Z
Identity	VIL	VIL	VIH	Vcc	VH	Identity Code

X = Don't Care

1.2 Read Mode

(See Timing Diagrams and AC Characteristics)

Read Mode is accessed when

- a) the CE pin is low to power up (enable) the chip
- b) the $\overline{\text{OE}}$ pin is low to gate the data to the output pins

For Read operations, if the addresses are stable, the address access time (tACC) is equal to the delay from $\overline{\text{CE}}$ to output (tCE). Data is transferred to the output after a delay from the falling edge of $\overline{\text{OE}}$ (tOE).

1.3 Standby Mode

The standby mode is defined when the \overline{CE} pin is high (VIH) and a program mode is not defined.

When these conditions are met, the supply current will drop from 20 mA to 100 μ A.

1.4 Output Enable

This feature eliminates bus contention in microprocessor-based systems in which multiple devices may drive the bus. The outputs go into a high impedance state when the following condition is true:

• The OE and PGM pins are both high.

1.5 <u>Erase Mode (U.V. Windowed Versions)</u>

Windowed products offer the capability to erase the memory array. The memory matrix is erased to the all 1's state when exposed to ultraviolet light. To ensure complete erasure, a dose of 15 watt-second/cm² is required. This means that the device window must be placed within one inch and directly underneath an ultraviolet lamp with a wavelength of 2537 Angstroms, intensity of $12,000\mu\text{W/cm}^2$ for approximately 20 minutes.

1.6 **Programming Mode**

The Express Algorithm has been developed to improve the programming throughput times in a production environment. Up to ten 100-microsecond pulses are applied until the byte is verified. No overprogramming is required. A flowchart of the express algorithm is shown in Figure 1-3.

Programming takes place when:

- a) Vcc is brought to the proper voltage,
- b) VPP is brought to the proper VH level,
- c) the \overline{CE} pin is low,
- d) the \overline{OE} pin is high, and
- e) the \overline{PGM} pin is low.

Since the erased state is "1" in the array, programming of "0" is required. The address to be programmed is set via pins A0-A12 and the data to be programmed is presented to pins O0-O7. When data and address are stable, \overline{OE} is high, \overline{CE} is low and a low-going pulse on the \overline{PGM} line programs that location.

1.7 Verify

After the array has been programmed it must be verified to ensure all the bits have been correctly programmed. This mode is entered when all the following conditions are met:

- a) Vcc is at the proper level,
- b) VPP is at the proper VH level,
- c) the CE line is low,
- d) the PGM line is high, and
- e) the OE line is low.

1.8 Inhibit

When programming multiple devices in parallel with different data, only \overline{CE} or \overline{PGM} need be under separate control to each device. By pulsing the \overline{CE} or \overline{PGM} line low on a particular device in conjunction with the \overline{PGM} or \overline{CE} line low, that device will be programmed; all other devices with \overline{CE} or \overline{PGM} held high will not be programmed with the data, although address and data will be available on their input pins (i.e., when a high level is present on \overline{CE} or \overline{PGM}); and the device is inhibited from programming.

1.9 Identity Mode

In this mode, specific data is output which identifies the manufacturer as Microchip Technology Inc. and device type. This mode is entered when Pin A9 is taken to VH (11.5V to 12.5V). The $\overline{\text{CE}}$ and $\overline{\text{OE}}$ lines must be at VIL. A0 is used to access any of the two non-erasable bytes whose data appears on O0 through O7.

Pin →	Input	Output								
Identity	Α0	0	0 6	O 5	0	0 3	O 2	0	0 0	H e x
Manufacturer Device Type*	VIL VIH	0 0	0 0	1 0	0 0	1 0	0 0	0 1	1 0	29 02

^{*} Code subject to change

FIGURE 1-3: PROGRAMMING EXPRESS ALGORITHM Conditions: Tamb = $25^{\circ}C \pm 5^{\circ}C$ Start $Ycc = 6.5 \pm 0.25 Y$ YPP = 13.0 ±0.25Y ADDR = First Location Ycc = 6.5YYPP= 13.0Y ŧ X = 0Program one 100 µs pulse Increment X Pass Yerify Byte Fail Nο Yes / Device X = 10?Failed Last Yes Address? No Increment Address Ycc = YPP = 4.5Y, 5.5Y

ΆIÌ

bytes

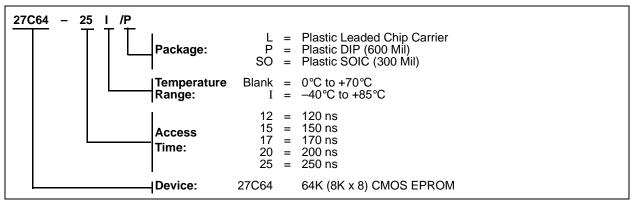
= original

data?

No

De vice

Failed


Yes

Device

Passed

27C64 Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICWorks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002 ===

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: 480-792-7627 Web Address: www.microchip.com

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

16200 Addison Road, Suite 255 Addison Plaza Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, IN 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

25950 Acero St., Suite 200 Mission Viejo, CA 92691 Tel: 949-462-9523 Fax: 949-462-9608

San Jose

1300 Terra Bella Avenue Mountain View, CA 94043 Tel: 650-215-1444 Fax: 650-961-0286

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Unit 32 41 Rawson Street Epping 2121, NSW Sydney, Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Unit 706B Wan Tai Bei Hai Bldg. No. 6 Chaoyangmen Bei Str. Beijing, 100027, China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Rm. 2401-2402. 24th Floor. Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China

Tel: 86-755-82901380 Fax: 86-755-8295-1393

China - Shunde

Room 401, Hongjian Building, No. 2 Fengxiangnan Road, Ronggui Town, Shunde District, Foshan City, Guangdong 528303, China Tel: 86-757-28395507 Fax: 86-757-28395571

China - Qingdao

Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China

Tel: 86-532-5027355 Fax: 86-532-5027205

India

Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-22290061 Fax: 91-80-22290062

Yusen Shin Yokohama Building 10F 3-17-2, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul. Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Singapore

200 Middle Road #07-02 Prime Centre Singapore, 188980

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Kaohsiung Branch 30F - 1 No. 8 Min Chuan 2nd Road Kaohsiung 806, Taiwan Tel: 886-7-536-4816 Fax: 886-7-536-4817

Taiwan

Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

Taiwan Branch 13F-3, No. 295, Sec. 2, Kung Fu Road Hsinchu City 300, Taiwan Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria

Durisolstrasse 2 A-4600 Wels Austria

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark

Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark

Tel: 45-4420-9895 Fax: 45-4420-9910

Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy

Via Salvatore Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands

Waegenburghtplein 4 NL-5152 JR, Drunen, Netherlands Tel: 31-416-690399 Fax: 31-416-690340

United Kingdom 505 Eskdale Road

Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44-118-921-5869 Fax: 44-118-921-5820

07/12/04